Site icon Nedir ve Nasıl

Geometri Konu Anlatımları

Geometri Konu Anlatımları

Karşılıklı kenar uzunlukları eşit ve bütün açıları 90° olan dörtgene dikdörtgen denir.

Dikdörtgen paralelkenarın açıları 90° olan halidir. Bu nedenle paralelkenarın sahip olduğu bütün özelliklere sahiptir.
2. Dikdörtgenin Alanı ve Çevresi

a. Dikdörtgenin alanı farklı iki kenarının çarpımına eşittir.

A(ABCD) = a . b

b. Bütün dörtgenlerde olduğu gibi dikdörtgende deköşegen uzunlukları biliniyor ise alanı,

c. Dikdörtgenin çevresi

3. Dikdörtgenin Köşegen Özellikleri

a. Dikdörtgende köşegen uzunlukları eşittir.
Köşegenler birbirlerini ortalar.

|AC| = |BD|

|AE| = |EC| = |DE| = |EB|

b. Kenar uzunlukları a ve b olan ABCD dikdörtgeninde köşegen uzunlukları

|AC| = |BD| = √a2 + b2

c. ABCD dikdörtgeninin içinde alınan bir P noktası dikdörtgenin köşeleri ile birleştirilirse

|AP|2 + |PC|2 = |PD|2 + |PB|2

P noktası dikdörtgenin dışında olduğunda da aynı özellik geçerlidir.

KARE
1. Kare

Bütün kenar uzunlukları eşit ve bütün açıları 90° olan dörtgene kare denir.

2. Karenin Alanı

Bir kenarı a olan karenin alanı

A(ABCD) = a2

3. Karenin Özellikleri

a. Karenin köşegenleri birbirini dik ortalar.
Köşegenlerin kenarlarla yaptığı açılar 45° dir.

b. Bir kenarı a olan karenin köşegeni

|AC| = |BD| = a√2

DELTOiD
a. Deltoid
Tabanları çakışık iki ikizkenar üçgenin oluşturduğu dörtgene deltoid denir.

b. Deltoidin köşegenleri diktir.

|AC| ┴ |BD|

c. Köşegenleri dik olduğundan alanı

d. ABCD deltoidinde [AC] köşegeni aynı zamanda A ve C açılarının açıortay doğrusudur.

e. ABD ve BCD ikizkenar üçgenlerinin tabanını oluşturan köşegen diğer köşegen tarafından iki eşit parçaya bölünür.

f. Deltoidin farklı kenarlarının birleştiği köşelerdeki
açıları eşittir.

m(ABC) = m(ADC)

Exit mobile version